Mechanism Design for Social Good

Provision and Targeting for Vulnerable Populations

EC 2020 Tutorial, June 25 and 26

Session #1b

Self-targeting: theoretical models

Sera Linardi

University of Pittsburgh

Sam Taggart Oberlin College

Possible Errors in Targeting

Kleven and Kopczuk (AEJ Policy, 2011)

Type II errors (award errors): ineligible individuals getting benefits

ineligible individuals getting benefits and being accepted

Type I error: eligible individuals not getting benefits

Type Ib errors (rejection errors): eligible individuals applying for benefits and being rejected.

AND

Type Ia errors (incomplete take-up): eligible individuals not applying for benefits.

Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?
- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function
- Some empirical evidence
- It looks like an ordeal, but it is productive! Productive complexity.

What is ordeal targeting?

- Types (wage rate, consumption): *a_i*
- Gov goal: want to give benefit *B* to *a_L* but can't observe *a_i* (In this talk we will ignore paying for *B* by taxing *a_H* (Nichols & Zeckhauser, 1982))

 $i \in \{L, H\}$ (poor, not poor)

- Program: Give *B* to applicants with probability P. $P(a_L) > P(a_H)$
- Problem: a_H still apply. (Type II error)
- Solution: Set application cost $C(a_i, s)$

where s is ordeal level e.g standing in line s hours cost s*wage rate

• Result: a_H will not apply, thus improving targeting efficiency

Examples

- Unemployment schemes require individuals to report to the unemployment office weekly during working hours, which is challenging for the employed
- Oportunidades in Mexico: appear in person to apply and recertify periodically, attending monthly health lectures
- Manual labor requirements to receive aid in welfare programs:
 - Works Progress Administration (WPA) in US Great Depression
 - National Rural Employment Guarantee Act (NREGA) right-to-work in India

What's the problem with ordeal targeting?

 a_L that applies pay ordeal cost $C(s, a_L)$

- Dead Weight Loss (DWL) a waste if not balanced by better targeting
- Cost born by the poor
- May discourage application among the poorest (Type 1a error)

Baseline model

Alatas et al (JPE, 2016)

•
$$\frac{\partial P(.)}{\partial a_i} < 0, \frac{\partial C(L,a_i)}{\partial a_i} > 0$$

- Apply: $U(a_i C(s, a_i)) + P(a_i)\delta U(a_i + B)) + (1 P(a_i))\delta U(a_i)$
- Not apply: $U(a_i) + \delta U(a_i)$
- Simplification: U(x) = x $C(s, a_i) = sa_i$
- $G(ain): -sa_i + P(a_i)\delta B$
- Apply if G > 0
- $\frac{\partial G}{\partial a_i} < 0, \frac{\partial G}{\partial s} < 0,$
- Increasing s decreases threshold type

Baseline model

Alatas et al (JPE, 2016)

$$\frac{\partial P(.)}{\partial a_i} < 0, \frac{\partial C(L,a_i)}{\partial a_i} > 0$$

- Apply: $U(a_i C(s, a_i)) + P(a_i)\delta U(a_i + B)) + (1 P(a_i))\delta U(a_i)$
- Not apply: $U(a_i) + \delta U(a_i)$
- Simplification: U(x) = x $C(s, a_i) = sa_i$
- $G(ain): -sa_i + P(a_i)\delta B$
- Apply if G > 0
- So *s* improves targeting efficiency when: $\frac{Pr(apply|a_{L:} s)}{Pr(apply|a_{H:} s)}$ is increasing in *s*

Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?
- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on distribution of cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function
- Some empirical evidence
- It looks like an ordeal, but it is productive! Productive complexity.

Extension: Cost shocks

- When applying, people experience ϵ shocks.
 - $\epsilon > 0$ ⇒ more likely to apply (have child care), $\epsilon < 0$ less likely (sick child).
 - Distributed w/ cdf F(.), mean 0 variance \sigma^2.
- Apply: $U(a_i C(s, a_i)) + P(a_i)\delta U(a_i + B)) + (1 P(a_i))\delta U(a_i) + \epsilon$
- Not apply: $U(a_i) + \delta U(a_i)$
- Now apply if $sa_i + P(a_i)\delta B + \epsilon > 0$ or $G(a_i, s) + \epsilon > 0$
- $Pr(apply|a_i, s) = 1 F(-G(a_i, s))$
- So *s* improves targeting efficiency when: $\frac{1-F(-G(a_L,s))}{1-F(-G(a_H,s))}$ is increasing in *s*.

Extension: Cost shocks

- When applying, people experience ϵ shocks.
 - $\epsilon > 0 \Rightarrow$ more likely to apply (have child care), $\epsilon < 0$ less likely (sick child).
 - Distributed w/ cdf F(.) mean 0 variance σ^2
- $\frac{1-F(-G(s,a_L))}{1-F(-G(s,a_H))}$ is increasing in *s* when distribution of shocks have the monotone hazard property
- Meaning hazard rate $\frac{f(-G(s,a_i))}{1-F(-G(s,a_i))}$ is increasing in a_i

e.g. uniform, normal, logistic distribution

but not log logistic and other "thick-tailed" distributions

Alatas et al (JPE, 2016)

Effect of increasing ordeal w/ and w/out cost shocks

Extension: Technology to overcome ordeal

- Previously: $C(s, a_i) = sa_i$ (standing in line *s* hours * wage rate)
- Now: suppose you have to travel *s* km to apply for *B*
- You can walk or bus: l > k

Walking: lsa_i

Bussing: $v + ksa_i$

- Increasing ordeal:
 - From 0 to *close* improves targeting
 - From *close* to *f ar* harms targeting (marginal cost for the poor is increasing more than for the rich.)

Extension: Concave utility

 $U(x) = \ln(x)$ $G = ln(a_i - C(s, a_i)) + P(a_i)\delta ln(a_i + B)) + (1 - P(a_i))\delta ln(a_i) - ln(a_i) + \delta ln(a_i)$

Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?
- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on distribution of cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function
- Some empirical evidence
- It looks like an ordeal, but it is productive! Productive complexity.

PKH self-targeting experiment

		2010 Collect consumption data LNPCE	2011 PMT and self targeting	Give B (4-13% of income),	substantial under reporting of assets in the initial interview	
Interviewer come to house		Total households	% interviewed (applied)	% received benefits interview	% (from total) that receive benefits	
	No ordeal	1998	35.3%	12.18%	4.3%	
Go to office to be interviewed	Ordeal	2000	37.7%	9.7%	3.7%	

Far, Self (500)	Close, Self
Far, +Spouse	Close, +Spouse

Ordeal: who shows up ?

• Regress $LNPCE_i = \alpha_1 + PMT_i \beta + \varepsilon_i$

•	Regress ShowUp _i against		ShowUp _i	
	$PMT_i \beta$ and ε_i	-	All	
			(1)	
	Selection from ordeal consistent with PMT	Observable consumption $(X'_i\beta)$	-2.217*** (0.201)	
	and is likely to improve upon it	Unobservable consumption (ε_i)	-0.907*** (0.136)	
		Stratum fixed effects	No	
		Observations	2,000	
		Mean of dependent variable	0.377	

Ordeal improves targeting

Increasing ordeal: +spouse

TABLE 8. Experimental Results: Probability of Showing up as a Function

	No s	No stratum fixed effects		
	(1)	(2)	(3)	
Both spouse subtreatment	0.196	4.303	0.461*	
	(0.146)	(2.840)	(0.237)	
Log consumption		-1.324***		
		(0.145)		
Both spouse subtreatment * Log consumption	(-0.318		
		(0.217)		

Increasing ordeal: +distance

TABLE 7. Experimental Results: Probability of Showing up as a Function of Distance

Why? Which of the three theoretical possibilities explains it?

Umm... none.

- cost shocks:
 - logistic error fits best, and it satisfy the monotone hazard property
- technology to overcome ordeal:
 - May be possible, but when simulate data constraining everyone to the same transport technology, no difference.
- curvature of utility function:
 - linear utility fits best
- So?? Why doesn't increasing ordeal improve targeting
 - Spouse: 28% request exemptions
 - Distance: 1.67 km
 - What would have worked is 6 hours wait (but that would be bad)
- This is where theory meets the limits of policy implementation.

Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?
- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on distribution of cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function
- Some empirical evidence
- It looks like an ordeal, but it is productive! Productive complexity.

Possible Errors in Targeting

Kleven and Kopczuk (AEJ Policy, 2011)

<u>Type II errors (award errors)</u>: ineligible individuals getting benefits

ineligible individuals getting benefits and being accepted

Type I error: eligible individuals not getting benefits

Type Ib errors (rejection errors): eligible individuals applying for benefits and being rejected.

AND

<u>Type la errors</u> (incomplete take-up): eligible individuals not applying for benefits.

Kleven and Kopczuk (AEJ Policy, 2011)

TABLE 1. SOCIAL PROGRAMS IN THE UNITED STATES

Strictness of eligibility criteria All transaction costs Moffitt (2003), Currie (2004) Mkandawire, UN Research Institute for Social Development, 2005

Incomplete takeup is an issue not just in the US

Country	Name of programme	Targeting accuracy for poorest quintile	Under-coverage (percentage of poor not reached)
Brazil	Bolsa Escola	1.98	73
Chile	PASIS (Pensiones Asistenciales de Ancianidad y de Invalidez) (old-age benefits)	2.67	84
Chile	Subdidio Única Familial (SUF) (cash transfers)	3.32	73
Colombia	Subsidized Health Insurance Regime (SHIR) (health social assistance)	1.68	26
Mexico	Oportunidades	2.9	40

Reducing random noise with program complexity

- As before, each individual has ability level *a*.
- *a* can be only be observed by gov with noise level σ (language barriers, health): $\epsilon/\sigma \sim 0.1$, cdf *P*(.), *P*(0) = 1/2. Individual knows own σ but not ϵ .
- Difference with Alatas et al (2016):
 ϵ is noise in signal of ability, not cost shock
 that is observed by individual when applying for benefits.
- Individual apply for benefits with screening intensity α (# of interviews/forms) with increasing cost function $f(\alpha)$ (transaction cost).
- Gov can reduce noise by increasing $\alpha : a' = a + \frac{\epsilon}{\alpha}$

Gov policy instruments:

As before assume 2 types a_i $i \in \{L, H\}$ (poor, not poor) Government have a budget of *R* and seek to give out a benefit $B \leq \overline{B}$ to as many a_L as possible using 3 policy levers:

- α :screening intensity/ transaction costs
- \bar{a} :strictness of eligibility criteria/ threshold
- B :program benefit

$$\alpha \uparrow f(\alpha) \uparrow \frac{\epsilon}{\alpha} \downarrow$$

$$a' = a + \frac{\epsilon}{\alpha} < \overline{a} \text{ receives } B$$

$$B \uparrow u(a_i + B - f(\alpha)) \uparrow$$

$$egin{array}{lll} \max & N_L\left(lpha,ar{a},B
ight) \ & s.t \ & \left[N_L\left(lpha,ar{a},B
ight)+N_H\left(lpha,ar{a},B
ight)
ight]B\leq R \end{array}$$

Effect of policy instruments on i's decision to apply

- Get benefit when $a_i + \frac{\epsilon}{\alpha} < \bar{a}$ so $\Pr(B|apply) = \Pr(\epsilon < \frac{\alpha(\bar{a}-a_i)}{\sigma_i}) = \Pr(\frac{\alpha(\bar{a}-a_i)}{\sigma_i})$
- Apply when

$$\mathbb{P}(\frac{\alpha(\bar{a}-a_i)}{\sigma_i}) u(a_i + B - f(\alpha)) + (1 - P(\frac{\alpha(\bar{a}-a)}{\sigma_i}) u(a_i - f(\alpha)) > u(a_i)$$

• Rearranging, we see that policy α , *B* sets a threshold probability:

$$\tilde{P}(\boldsymbol{\alpha}, \boldsymbol{B}) \equiv \frac{u(a_i) - u(a_i - f(\alpha))}{u(a_i + B - f(\alpha)) - u(a_i - f(\alpha))})$$

• Individual a_i, σ_i will only apply if

$$P(\frac{\alpha(\bar{a}-a_i)}{\sigma_i}) > \widetilde{P}(\alpha, B)$$

\overline{a} (strictness of eligibility criteria)

Individual a_i, σ_i will only apply if

$$P(\frac{\alpha(\bar{a}-a_i)}{\sigma_i}) > \widetilde{P}(\alpha, B)$$

- STRICT: $\bar{a} < a_L < a_H$ (w/ no noise no one should get it). Pr (apply) decrease in precision.
- $a_L < \bar{a} < a_H$ (w/ no noise a_L should get it). Pr (apply) increase in precision for a_L and decrease in precision for a_H .
- LENIENT: $a_L < a_H < \overline{a}$ (w/ no noise everyone should get it). Pr (apply) increase in precision.

In summary: tradeoffs between targeting errors

- α :screening intensity/ transaction costs
- $\alpha \uparrow$ Type 1b & 2 error \downarrow Type 1a error \uparrow

Pure ordeal would be: $f(\alpha) + s$

Does not help decrease noise, not useful for targeting here.

- B :program benefit
- B↑ Type 2 error ↑

Type 1a error \downarrow

Mechanism Design for Social Good

Provision and Targeting for Vulnerable Populations

EC 2020 Tutorial, June 25 and 26

Session #1b

Self-targeting: theoretical models

Sera Linardi

University of Pittsburgh

Sam Taggart Oberlin College