Mechanism Design for Social Good

Provision and Targeting for Vulnerable Populations

EC 2020 Tutorial, June 25 and 26

Session #1b
Self-targeting: theoretical models

Sera Linardi
University of Pittsburgh

Sam Taggart
Oberlin College
Possible Errors in Targeting

Type II errors (award errors): ineligible individuals getting benefits

ineligible individuals getting benefits and being accepted

Type I error: eligible individuals not getting benefits

Type Ib errors (rejection errors): eligible individuals applying for benefits and being rejected.

AND

Type Ia errors (incomplete take-up): eligible individuals not applying for benefits.

Kleven and Kopczuk (AEJ Policy, 2011)
Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?

- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function

- Some empirical evidence

- It looks like an ordeal, but it is productive! Productive complexity.
What is ordeal targeting?

- Types (wage rate, consumption): \(a_i \quad i \in \{ L, H \} \) (poor, not poor)
- Gov goal: want to give benefit \(B \) to \(a_L \) but can’t observe \(a_i \)

 (In this talk we will ignore paying for \(B \) by taxing \(a_H \) (Nichols & Zeckhauser, 1982))

- Program: Give \(B \) to applicants with probability \(P \). \(P(a_L) > P(a_H) \)
- Problem: \(a_H \) still apply. (Type II error)

- Solution: Set application cost \(C(a_i, s) \)

 where \(s \) is ordeal level e.g standing in line \(s \) hours cost \(s \)*wage rate

- Result: \(a_H \) will not apply, thus improving targeting efficiency
Examples

- Unemployment schemes require individuals to report to the unemployment office weekly during working hours, which is challenging for the employed.

- Oportunidades in Mexico: appear in person to apply and recertify periodically, attending monthly health lectures.

- Manual labor requirements to receive aid in welfare programs:
 - Works Progress Administration (WPA) in US Great Depression
 - National Rural Employment Guarantee Act (NREGA) right-to-work in India
What’s the problem with ordeal targeting?

\(a_L \) that applies pay ordeal cost \(C(s, a_L) \)

- Dead Weight Loss (DWL) – a waste if not balanced by better targeting
- Cost born by the poor
- May discourage application among the poorest (Type 1a error)
Baseline model

- Apply: \(U(a_i - C(s, a_i)) + P(a_i)\delta U(a_i + B)) + (1 - P(a_i))\delta U(a_i) \)
- Not apply: \(U(a_i) + \delta U(a_i) \)
- Simplification: \(U(x) = x \quad C(s, a_i) = sa_i \)
- \(G(ain): -sa_i + P(a_i)\delta B \)
- Apply if \(G > 0 \)

\[\frac{\partial G}{\partial a_i} < 0, \quad \frac{\partial G}{\partial s} < 0, \]

Increasing \(s \) decreases threshold type

Fig 1a

\[\frac{\partial P(.)}{\partial a_i} < 0, \frac{\partial C(L,a_i)}{\partial a_i} > 0 \]

Alatas et al (JPE, 2016)
Baseline model

- Apply: \(U(a_i - C(s, a_i)) + P(a_i) \delta U(a_i + B)) + (1 - P(a_i)) \delta U(a_i) \)
- Not apply: \(U(a_i) + \delta U(a_i) \)
- Simplification: \(U(x) = x \quad C(s, a_i) = sa_i \)
- \(G(ain): -sa_i + P(a_i) \delta B \)
- Apply if \(G > 0 \)

So \(s \) improves targeting efficiency when:

\[
\frac{Pr(apply|a_L, s)}{Pr(apply|a_H, s)} \text{ is increasing in } s
\]

\[
\frac{\partial P(.)}{\partial a_i} < 0, \quad \frac{\partial C(L, a_i)}{\partial a_i} > 0
\]

Alatas et al (JPE, 2016)

Fig 1b: No errors
Not poor hurt more w/ increasing L
Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?

- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on distribution of cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function

- Some empirical evidence

- It looks like an ordeal, but it is productive! Productive complexity.
Extension: Cost shocks

- When applying, people experience ϵ shocks.
 - $\epsilon > 0 \Rightarrow$ more likely to apply (have child care), $\epsilon < 0$ less likely (sick child).
 - Distributed w/ cdf $F(\cdot)$, mean 0 variance σ^2.

- Apply: $U(a_i - C(s, a_i)) + P(a_i)\delta U(a_i + B)) + (1 - P(a_i))\delta U(a_i) + \epsilon$
- Not apply: $U(a_i) + \delta U(a_i)$
- Now apply if $sa_i + P(a_i)\delta B + \epsilon > 0$ or $G(a_i, s) + \epsilon > 0$
- $Pr(apply|a_i, s) = 1 - F(-G(a_i, s))$

- So s improves targeting efficiency when:
 $$\frac{1 - F(-G(a_L, s))}{1 - F(-G(a_H, s))}$$
 is increasing in s.

Alatas et al (JPE, 2016)
Extension: Cost shocks

- When applying, people experience ϵ shocks.
 - $\epsilon > 0 \Rightarrow$ more likely to apply (have child care), $\epsilon < 0$ less likely (sick child).
 - Distributed w/ cdf $F(.)$ mean 0 variance σ^2

- \[
 \frac{1-F(-G(s,a_L))}{1-F(-G(s,a_H))}
\]
 is increasing in s when
 distribution of shocks have the monotone hazard property

- Meaning hazard rate \[
 \frac{f(-G(s,a_i))}{1-F(-G(s,a_i))}
\]
 is increasing in a_i
 e.g. uniform, normal, logistic distribution
 but not log logistic and other “thick-tailed” distributions

Alatas et al (JPE, 2016)
Effect of increasing ordeal w/ and w/out cost shocks

Alatas et al (JPE, 2016)

Fig 1b: No errors
Not poor hurt more w/ increasing L

Fig 2a: Log logistic errors
Poor hurt more w/ increasing L
Extension: Technology to overcome ordeal

- Previously: $C(s, a_i) = sa_i$ (standing in line s hours * wage rate)
- Now: suppose you have to travel s km to apply for B
- You can walk or bus: $l > k$
 - Walking: ls_i
 - Bussing: $v + ks_i$
- Increasing ordeal:
 - From 0 to close improves targeting
 - From close to far harms targeting
 (marginal cost for the poor is increasing more than for the rich.)

Alatas et al (JPE, 2016)
Extension: Concave utility

\[U(x) = \ln(x) \]

\[G = \ln(a_i - C(s, a_i)) + P(a_i)\delta \ln(a_i + B)) + (1 - P(a_i))\delta \ln(a_i) - \ln(a_i) + \delta \ln(a_i) \]
Theoretical groundwork: outline

- Ordeal targeting: sacrificing productive efficiency for targeting efficiency
- How is ordeal targeting supposed to work?

- Theoretically, does increasing ordeals improve targeting efficiency?
 - Depends on distribution of cost shocks
 - Depends on technology to overcome ordeal
 - Depends on curvature of utility function

- Some empirical evidence

- It looks like an ordeal, but it is productive! Productive complexity.
PKH self-targeting experiment

<table>
<thead>
<tr>
<th>Interviewer</th>
<th>Total households</th>
<th>2010 Collect consumption data LNPCE</th>
<th>2011 PMT and self targeting</th>
<th>Give B (4-13% of income)</th>
<th>substantial under reporting of assets in the initial interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ordeal</td>
<td>1998</td>
<td>35.3%</td>
<td>12.18%</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>Ordeal</td>
<td>2000</td>
<td>37.7%</td>
<td>9.7%</td>
<td>3.7%</td>
<td></td>
</tr>
</tbody>
</table>

Far, Self (500) Close, Self
Far, +Spouse Close, +Spouse

Alatas et al (JPE, 2016)
Ordeal: who shows up?

- Regress $LNPCE_i = \alpha_1 + PMT_i \beta + \varepsilon_i$

- Regress $ShowUp_i$ against $PMT_i \beta$ and ε_i

Selection from ordeal consistent with PMT

...and is likely to improve upon it

<table>
<thead>
<tr>
<th></th>
<th>ShowUp$_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

| | | |
|--------------------------|------------|
| Observable consumption ($X'_i \beta$) | -2.217*** |
| (0.201) | |
| Unobservable consumption (ε_i) | -0.907*** |
| (0.136) | |

Stratum fixed effects
Observations 2,000
Mean of dependent variable 0.377
Ordeal improves targeting

But the poorest are still not getting it!

Yes, we reduce leakage!
(Type 2 error)
Increasing ordeal: +spouse

<table>
<thead>
<tr>
<th>Table 8: Experimental Results: Probability of Showing up as a Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>No stratum fixed effects</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(1) (2) (3)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Both spouse subetreatment</td>
</tr>
<tr>
<td>0.196 4.303 0.461*</td>
</tr>
<tr>
<td>(0.146) (2.840) (0.237)</td>
</tr>
<tr>
<td>Log consumption</td>
</tr>
<tr>
<td>-1.324***</td>
</tr>
<tr>
<td>(0.145)</td>
</tr>
<tr>
<td>Both spouse subetreatment * Log consumption</td>
</tr>
<tr>
<td>-0.318</td>
</tr>
<tr>
<td>(0.217)</td>
</tr>
</tbody>
</table>
Increasing ordeal: +distance

Why? Which of the three theoretical possibilities explains it?

TABLE 7. Experimental Results: Probability of Showing up as a Function of Distance

<table>
<thead>
<tr>
<th></th>
<th>No stratum fixed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Close subtreatment</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
</tr>
<tr>
<td>Log consumption</td>
<td>-1.434***</td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
</tr>
<tr>
<td>Close subtreatment* Log consumption</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
</tr>
</tbody>
</table>

Showup

Measured Rates

Consumption Quintile

1, 2, 3, 4, 5
Umm… none.

- **cost shocks:**
 - logistic error fits best, and it satisfy the monotone hazard property

- **technology to overcome ordeal:**
 - May be possible, but when simulate data constraining everyone to the same transport technology, no difference.

- **curvature of utility function:**
 - linear utility fits best

- **So?? Why doesn’t increasing ordeal improve targeting**
 - Spouse: 28% request exemptions
 - Distance: 1.67 km
 - What would have worked is 6 hours wait (but that would be bad)

- **This is where theory meets the limits of policy implementation.**
Theoretical groundwork: outline

● Ordeal targeting: sacrificing productive efficiency for targeting efficiency
● How is ordeal targeting supposed to work?

● Theoretically, does increasing ordeals improve targeting efficiency?
 ○ Depends on distribution of cost shocks
 ○ Depends on technology to overcome ordeal
 ○ Depends on curvature of utility function

● Some empirical evidence

● It looks like an ordeal, but it is productive! Productive complexity.
Possible Errors in Targeting

Type II errors (award errors): ineligible individuals getting benefits

-ineligible individuals getting benefits and being accepted

Type I error: eligible individuals not getting benefits

- **Type Ib errors** (rejection errors): eligible individuals applying for benefits and being rejected.

AND

Type Ia errors (incomplete take-up): eligible individuals not applying for benefits.

Kleven and Kopczuk (AEJ Policy, 2011)
TABLE 1. SOCIAL PROGRAMS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>TAKE UP⁴</th>
<th>TARGETING²</th>
<th>COMPLEXITY²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid</td>
<td>73%</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Medicare Part B³</td>
<td>96%</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Supplemental Security Income Program (SSI)</td>
<td>60%</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Social Security Disability Insurance (DI)</td>
<td>No estimate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>The Earned Income Tax Credit (EITC)</td>
<td>80%-86%</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Temporary Assistance for Needy Families (TANF)⁴</td>
<td>60%-90%</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Housing Programs</td>
<td>below 50%</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Food Stamps</td>
<td>69%</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>The Special Supplemental Nutrition Program for Women, Infants and Children (WIC)</td>
<td>67%, 73%, 38%</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Child Care Subsidies</td>
<td>40%</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

All transaction costs: Kleven and Kopczuk (AEJ Policy, 2011)
Incomplete takeup is an issue not just in the US

<table>
<thead>
<tr>
<th>Country</th>
<th>Name of programme</th>
<th>Targeting accuracy for poorest quintile</th>
<th>Under-coverage (percentage of poor not reached)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Bolsa Escola</td>
<td>1.98</td>
<td>73</td>
</tr>
<tr>
<td>Chile</td>
<td>PASIS (Pensiones Asistenciales de Ancianidad y de Invalidez) (old-age benefits)</td>
<td>2.67</td>
<td>84</td>
</tr>
<tr>
<td>Chile</td>
<td>Subdido Única Familial (SUF) (cash transfers)</td>
<td>3.32</td>
<td>73</td>
</tr>
<tr>
<td>Colombia</td>
<td>Subsidized Health Insurance Regime (SHIR) (health social assistance)</td>
<td>1.68</td>
<td>26</td>
</tr>
<tr>
<td>Mexico</td>
<td>Oportunidades</td>
<td>2.9</td>
<td>40</td>
</tr>
</tbody>
</table>
Reducing random noise with program complexity

- As before, each individual has ability level a.

- a can be only be observed by gov with noise level σ (language barriers, health): $\epsilon/\sigma \sim 0,1$, cdf $P(.)$, $P(0) = 1/2$. Individual knows own σ but not ϵ.

- Difference with Alatas et al (2016): ϵ is noise in signal of ability, not cost shock that is observed by individual when applying for benefits.

- Individual apply for benefits with screening intensity α (# of interviews/forms) with increasing cost function $f(\alpha)$ (transaction cost).

- Gov can reduce noise by increasing α: $a' = a + \frac{\epsilon}{\alpha}$
Gov policy instruments:

As before assume 2 types a_i $i \in \{L, H\}$ (poor, not poor)

Government have a budget of R and seek to give out a benefit $B \leq \bar{B}$ to as many a_L as possible using 3 policy levers:

- α : screening intensity/ transaction costs
 - $\alpha \uparrow$ $f(\alpha) \uparrow \frac{\epsilon}{\alpha} \downarrow$

- \bar{a} : strictness of eligibility criteria/ threshold
 - $a' = a + \frac{\epsilon}{\alpha} < \bar{a}$ receives B

- B : program benefit
 - $B \uparrow$ $u(a_i + B - f(\alpha)) \uparrow$

\[
\max_{\alpha, \bar{a}, B} \ N_L (\alpha, \bar{a}, B) \\
\text{s.t.} \\
[N_L (\alpha, \bar{a}, B) + N_H (\alpha, \bar{a}, B)] B \leq R
\]

Kleven and Kopczuk (AEJ Policy, 2011)
Effect of policy instruments on i’s decision to apply

- Get benefit when \(a_i + \frac{\epsilon}{\alpha} < \bar{a} \) so \(\Pr(B|\text{apply}) = \Pr(\epsilon < \frac{\alpha(\bar{a} - a_i)}{\sigma_i}) = P\left(\frac{\alpha(\bar{a} - a_i)}{\sigma_i}\right) \)

- Apply when

\[
P\left(\frac{\alpha(\bar{a} - a_i)}{\sigma_i}\right) u(a_i + B - f(\alpha)) + (1 - P\left(\frac{\alpha(\bar{a} - a)}{\sigma_i}\right)) u(a_i - f(\alpha)) > u(a_i)
\]

- Rearranging, we see that policy \(\alpha, B \) sets a threshold probability:

\[
\tilde{P}(\alpha, B) \equiv \frac{u(a_i) - u(a_i - f(\alpha))}{u(a_i + B - f(\alpha)) - u(a_i - f(\alpha))}
\]

- Individual \(a_i, \sigma_i \) will only apply if

\[
P\left(\frac{\alpha(\bar{a} - a_i)}{\sigma_i}\right) > \tilde{P}(\alpha, B)
\]

Kleven and Kopczuk (AEJ Policy, 2011)
\bar{a} (strictness of eligibility criteria)

Individual a_i, σ_i will only apply if

\[P \left(\frac{\alpha(\bar{a} - a_i)}{\sigma_i} \right) > \bar{P}(\alpha, B) \]

- **STRICT**: $\bar{a} < a_L < a_H$ (w/ no noise no one should get it).
 Pr (apply) decrease in precision.

- $a_L < \bar{a} < a_H$ (w/ no noise a_L should get it).
 Pr (apply) increase in precision for a_L and decrease in precision for a_H.

- **LENIENT**: $a_L < a_H < \bar{a}$ (w/ no noise everyone should get it).
 Pr (apply) increase in precision.
In summary: tradeoffs between targeting errors

- α: screening intensity/transaction costs
- $\alpha \uparrow$ Type 1b & 2 error \downarrow Type 1a error \uparrow

Pure ordeal would be: $f(\alpha) + s$

Does not help decrease noise, not useful for targeting here.

- B: program benefit
- B \uparrow Type 2 error \uparrow Type 1a error \downarrow
Mechanism Design for Social Good

 Provision and Targeting for Vulnerable Populations

EC 2020 Tutorial, June 25 and 26 Session #1b

Self-targeting: theoretical models

Sera Linardi
University of Pittsburgh

Sam Taggart
Oberlin College