Mechansim Design for Social Good

EC 2020 Tutorial, June 25 and 26 Part 2B

Sera Linardi University of Pittsburgh

Part IIb: Theoretical issues in information acquisition.

Provision and Targeting for Vulnerable Populations

Sam Taggart **Oberlin College**

Goal of this session

So far.

- **Day 1:** Targeting toolbox.
- Previous session: Behavioral considerations.

- **This session:** Strategic and computational issues in PMT and CBT. Proxy means testing: Lessons from strategic classification. Community-based targeting: Learning from local data.

Income support, targeted at people with disabilities.

Application Process:

- Interview with evaluator, extensive paperwork. - 5-month waiting period w/ no gainful employment.
- Screening based on medical history.
- **Observations:** applicants manipulate
 - labor supply [Maestas et al., AER 2000]
 - application quality

Case Study: SSD

Case Study: SSD

Desc

Help Filing For Disability - Need to Apply For Disability?

benefits.disabilityguide.com PReport Ad You may be eligible for up to \$3,011 in disability, start your application now! Our advocates have helped thousands of people just like you through the disability ... Risk-Free Evaluation · No Upfront or Hidden Fees · Free Consultation

How To Apply

Step by step guidance through the Federal Disability Application.

Do I Qualify?

Free information on qualifying factors for SS Disability.

Start Your Application

Take the first steps to completing your disability application now.

Speak with one of our experienced disability advocates today, free!

Obse

SSI Disability Application - Apply for Disability Benefits AD

disabilityapplicationhelp.org Peport Ad

Apply for Supplemental Security Income. Free Help, Get Benefits Faster! Do I Qualify?, SSDI-SSI Benefit Programs, How to Apply?, Listing of Impairments

Understanding SSI - How Someone Can Help You With Your SSI

https://www.ssa.gov/ssi/text-help-ussi.htm

If you are applying because you are disabled or blind, we will complete a disability report.

Free Benefit Evaluation

disabilityapprovalguide.com

Find out if you qualify for disability benefits. Let our Disability Advocates help. Risk-free evaluation. No upfront or hidden fees. Start your application today.

Labor Distortion:

- US Social Security [Friedberg, R. Econ. and Stat. 2000]
- UK Working Families Tax Credit [Blundell and Hoynes 2004]

Tradeoffs.

- explanatory power

- manipulation cost

Eligibility Manipulation

- **PMT Standard Practice:** Choose features that are harder to manipulate.
- **Challenge:** How to design your targeting if you expect manipulation.

- Idea: Treat targeting as a learning problem.
 - training is from honest data
 - testing is on manipulated data
 - Data points = Individuals in population.

Idea: Treat targeting as a learning problem.

Learning environment:

Each individual has:

- features = points in \mathbb{R}^n
- eligibility in {0,1} ("low income")

Underlying joint distribution D

Idea: Treat targeting as a learning problem.

Learning environment:

Each individual has:

- features = points in \mathbb{R}^n
- eligibility in {0,1}

Underlying joint distribution D

Training stage:

- learner receives m (initial survey) samples (x_i,y_i)
- learner selects linear classifier h

Idea: Treat targeting as a learning problem.

Learning environment:

Each individual has:

- features = points in \mathbb{R}^n
- eligibility in {0,1}

Underlying joint distribution D

Training stage:

- learner receives m samples (x_i,y_i)
- learner selects linear classifier h

Test stage:

- learner draws fresh data point (x,y)
- goal: maximize Pr[h(x)=y]

Idea: Treat targeting as a learning problem.

Learning environment:

Each individual has:

- features = points in \mathbb{R}^n
- eligibility in $\{0,1\}$

Underlying joint distribution D

Training stage:

- learner receives m samples (x_i,y_i)
- learner selects linear classifier h

Test stage:

- learner draws fresh data point (x,y)
- x moves to new set of features z(x)
- learner outputs h(z(x))

Idea: Treat targeting as a learning problem.

Learning environment:	Training s
Each individual has: - features = points in R ⁿ - eligibility in {0,1} Jnderlying joint distribution D	- learner re samples (x
	- learner s classifier h benefits
Objectives - objective of x: maximize	u(x) = I(h(z(x)

- objective of learner: maximize $Pr_{x\sim D}[h(z(x))=y]$ (knows c but not D)

stage:

- receives m Xi,Yi)
- elects linear

Test stage:

- learner draws fresh data point (x,y)
- x moves to new set of features z(x)

manipulation cost earner outputs h(z(x))

(h(z(x))=1)-c(z(x),x) (knows h)

- **Def.** c is linearly separable if it is of the form $c(x,y) = max(0, <\alpha, y-x>)$ for some α .
- **Ex.** $a_1 = \text{cost to "borrow kids,"} a_2 = \text{worsen home exterior}$
- **Theorem (informal).** For separable cost functions and linear hypotheses, a near-optimal hypothesis can be learned efficiently in the strategic environment.

benchmark manipulated, knows D

- **Def.** c is linearly separable if it is of the form $c(x,y) = max(0, <\alpha, y-x>)$ for some α .
- **Ex.** $a_1 = \text{cost to "borrow kids,"} a_2 = \text{worsen home exterior}$
- **Theorem (informal).** For separable cost functions and linear hypotheses, a near-optimal hypothesis can be learned efficiently in the strategic environment.

Algorithm (informal).

- Select hypothesis $\langle \alpha, y \rangle \geq t$ that does best on training data. - "Move the goalpost": $<\alpha, y> \ge t^*+1$

- **Def.** c is linearly separable if it is of the form $c(x,y) = max(0, <\alpha, y-x>)$ for some α .
- **Ex.** $a_1 = \text{cost to "borrow kids,"} a_2 = \text{worsen home exterior}$
- **Theorem (informal).** For separable cost functions and linear hypotheses, a near-optimal hypothesis can be learned efficiently in the strategic environment.

Algorithm (informal).

- Select hypothesis $\langle \alpha, y \rangle \geq t$ that does best on training data.
- "Move the goalposts": $<\alpha, y> \ge t+1$

Different papers, similar conclusions:

[Brückner and Scheffer, KDD 2011] [Dalvi et al., KDD 2004]

Q: Does strategic classification treat vulnerable populations fairly? **Two groups:** A ("majority") and B ("vulnerable") Welfare disparity: E[u(x) | +, A] - E[u(x) | +, B]**Inequality definitions: Inequality in costs** $C_A(x,y) = max(0, <\alpha, y-x>)$ $C_B(x,y) = max(0,<\rho\alpha,y-x>) \rho > 1$ **Inequality in features:** given "likelihood" L(x) = Pr[+|x] $\Pr[L(x) \le q + A] \le \Pr[L(x) \le q + B]$ for all q

Theorem: Between \ and \, under either notion of inequality (plus a regularity condition), welfare disparity E[u(x) + , A] - E[u(x) + , B] increases.

Inequality definitions:

Inequality in costs

 $C_A(x,y) = max(0, <\alpha, y-x>)$

 $C_B(x,y) = max(0,<\rho\alpha,y-x>) \rho > 1$

Inequality in features: given "likelihood" L(x) = Pr[+|x]

 $\Pr[L(x) \le q | +, A] \le \Pr[L(x) \le q | +, B]$

Interventions

[Hu et al., FAT* 2019]

Inequality in costs $C_A(x,y) = max(0, <\alpha, y-x>)$ $C_B(x,y) = max(0,<\rho\alpha,y-x>) \rho > 1$

Intervention: Subsidies

Subsidized costs for B:

 $C_B(x,y) = max(0, < \beta \rho \alpha, y-x>) \quad \rho > 1, \beta < 1$

New objective for learner:

 $Pr_{x\sim D}[h(z(x))=y] - \beta Cost_{B} Pr[B]$

Theorem: There exists instances where the the learner improves their objective with subsidies, but both populations' utilities degrade.

expected manipulation cost from B

Interventions: Beyond subsidies?

Targeting for interventions:

- Current approach: categorical.
- Are there better ways to target subsidies within B?

This model. Manipulation

- makes targeting harder
- otherwise irrelevant to learner

Payoff-relevant manipulations:

Manipulation gains in learner utility.

- [Kleinberg and Raghavan, EC 2019]
- [Haghtalab et al, IJCAI 2020]

Learning from Community Data [Alatas et al., AER 2012]

Goal: Compare community-based targeting to a PMT.

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

What follows: Three observations from their data.

Learning from Community Data [Alatas et al., AER 2012]

Goal: Compare community-based targeting to a PMT.

Data:

- Baseline: surveyed community members
 - consumption
 - social habits
- impressions of others' wealth - Community meeting: ranked village members by wealth
- PMT data

What follows: Three observations from their data.

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer

Richer

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer

Α	Richer
В	

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer

B	

Richer

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer	В
	С

Richer

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer

B	

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

Poorer

B	

Participatory Wealth Ranking:

- open-invitation community meeting
- group agrees on poverty definition
- group ranks members in community by wealth
- benefits given to bottom k

Ranking protocol:

- sequential search w/ short list
- binary search w/ long list

Thorough, but time-consuming.

Question: How does targeting accuracy change during the meeting?

Observation: Protocol matters.

What is "Poor?"

Question: Did community incorporate information differently than PMT?

	Rank according to welfare metric			Targeting rank list in		
	Community survey ranks (r_c) (1)	Subvillage head survey ranks (r_e) (2)	Self- assessment (r_s) (3)	PMT Community Hybrid villages villages villages (4) (5) (6)		
Log per capita consumption	0.176*** (0.008)	0.145*** (0.008)	0.087*** (0.004)	0.132*** 0.197*** 0.162*** (0.013) (0.014) (0.014)		
Panel A. Household demographics						
Log HH size	0.164^{***} (0.011)	0.134*** (0.010)	0.073*** (0.006)	$\begin{array}{cccc} -0.028 & 0.154^{***} & 0.078^{***} \\ (0.019) & (0.019) & (0.021) \end{array}$		
Share kids	-0.125^{***} (0.021)	-0.094^{***} (0.021)	-0.037^{***} (0.012)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Panel B. Ability to smooth shocks						
Elite connected	0.092*** (0.008)	0.044 *** (0.009)	0.025^{***} (0.005)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Total connectedness	-0.039^{***} (0.010)	-0.021 ** (0.009)	-0.015^{***} (0.005)	$\begin{array}{ccc} -0.016 & -0.019 & -0.054^{***} \\ (0.017) & (0.017) & (0.019) \end{array}$		
Number of family members outside subvillage	0.012*** (0.004)	0.010^{***} (0.003)	0.006^{***} (0.002)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Participation through work to community projects	$0.002 \\ (0.011)$	0.021 ** (0.010)	$0.005 \\ (0.006)$	$\begin{array}{cccc} 0.000 & 0.010 & 0.003 \\ (0.018) & (0.019) & (0.019) \end{array}$		
Participation through money to community projects	0.061*** (0.009)	0.041*** (0.009)	0.024*** (0.005)	$\begin{array}{cccccccc} 0.056^{***} & 0.058^{***} & 0.034^{*} \\ (0.016) & (0.016) & (0.018) \end{array}$		
Participation in religious groups	0.027*** (0.010)	0.033*** (0.010)	0.014** (0.006)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

What is "Poor?"

Question: Did community incorporate information differently than PMT?

Panel C. Discrimination against minorities?						
Ethnic minority	-0.024* (0.014)	-0.019 (0.014)	-0.003 (0.008)	0.012 (0.026)	-0.051** (0.025)	-0.011 (0.024)
Religious minority	0.012 (0.018)	-0.007 (0.017)	-0.014* (0.008)	-0.018 (0.030)	0.025 (0.032)	0.012 (0.033)
Panel D. Correcting for earnings abili	ty					
HH head with primary education or less	-0.028*** (0.009)	-0.025^{***} (0.009)	-0.037*** (0.005)	-0.108^{***} (0.017)	-0.011 (0.018)	-0.066^{***} (0.017)
Widow	-0.104^{***} (0.014)	-0.083^{***} (0.014)	-0.012 (0.008)	0.009 (0.027)	-0.108^{***} (0.024)	-0.026 (0.028)
Disability	-0.045^{***} (0.016)	-0.037^{***} (0.014)	-0.026^{***} (0.008)	-0.079^{***} (0.027)	0.009 (0.026)	0.012 (0.027)
Death	-0.041* (0.025)	-0.031 (0.025)	-0.010 (0.015)	-0.111^{***} (0.042)	-0.013 (0.048)	-0.059 (0.043)
Sick	-0.038^{***} (0.011)	-0.041^{***} (0.011)	-0.028^{***} (0.006)	0.007 (0.018)	-0.018 (0.019)	-0.044 ** (0.019)
Recent shock to income	-0.001 (0.009)	-0.005 (0.009)	-0.013 ** (0.005)	-0.019 (0.016)	0.009 (0.016)	-0.012 (0.017)
Tobacco and alcohol consumption	-0.0002*** (0.000)	-0.0002^{***} (0.000)	-0.0001^{***} (0.000)	-0.0002*** (0.000)	-0.0002^{***} (0.000)	-0.0001*** (0.000)
Observations	5,337	4,680	5,724	1,814	1,876	1,889

Observation: Community maximized a different welfare function.

Who does the community learn from? [Alatas et al., AER 2016]

Five observations about wealth impressions:

- 1. social proximity more accurate
- 2. socially central \longrightarrow more accurate
- 3. individuals sometimes said "don't know"
- 4. those who "did know" were sometimes wrong
- 5. less proximate less certain

Reasonable conclusions:

- information is passed along social network
- transmission is noisy

Who does the community learn from? [Alatas et al., AER 2016]

Question: Can network structure predict targeting accuracy?

Complex Approach:

- Estimate a structural model of learning on networks. - Test if simulated diffusion predicts targeting accuracy.

Simple Approach:

- Identify coarse-grained properties of networks
 - (avg. degree, clustering coefficient, ...)
- Regress targeting accuracy on these properties.
- **Observation:** Network structure matters a lot.

Protocol design: Can we better trade off thoroughness against fatigue?

a community's welfare function?

are predictive of CBT's success?

Open Problems for CBT

- **Targeting for the community:** How can we better learn and target to maximize

- **Predicting diffusion:** Given a network structure, can we predict if CBT will work?
- **Predicting diffusion, simply:** Are there easy-to-measure network properties that

EC Tutorial Chairs: Sigal Oren, Brendan Lucier

MD4SG Leadership: Rediet Abebe, Irene Lo, Ana-Andreea Stoica

MD4SG Inequality Group: Especially Zoë Hitzig, Angela Zhou

